LZ-UTF8

LZ-UTF8 is a practical text compression library and stream format designed with
the following objectives and properties:

1. Compress UTF-8 and 7-bit ASCII strings only. No support for arbitrary
binary content or other string encodings (such as ISO 8859-1, UCS-2,
UTF-16 or UTF-32).

2. Fully compatible with UTF-8. Any valid UTF-8 byte stream is also a valid
LZ-UTF8 byte stream (but not vice versa).

3. Individually compressed strings can be freely concatenated and
intermixed with each other as well as with plain UTF-8 strings, and yield a
byte stream that can be decompressed to the equivalent concatenated
source strings.

4. An input string may be incrementally compressed with some arbitrary
partitioning and then decompressed with any other arbitrary partitioning.

5. Decompressing any input block should always yield a valid UTF-8 string.
Trailing incomplete codepoint sequences should be saved and only sent to
the output when a valid sequence is available. Decompressor should
always output the longest sequence possible. Consequently: no flushing is
needed when the end of the stream is reached.

6. Should run efficiently in pure Javascript. Including on mobile.
Decompression should be fast in particular.

7. Achieve reasonable compression ratio.

8. Simple algorithm. Relatively small amount of code (decompressor should
be less than 100 lines of code).

9. One single permanent, standard scheme. No variations or metadata apart
from the raw bytes. Try to adopt the best possible practices and find
reasonable parameters that would be uniform across implementations
(having uniform compressor output between different implementations
would significantly simplify testing and quality assurance).



The Algorithm

The algorithm is the standard LZ77 algorithm with a window size of 32767 bytes.
The minimum match length is 4 bytes, maximum is 31 bytes. The compressed
stream format is relatively simple as it is completely byte aligned (necessary in
order to allow some of the properties mentioned above).

The Compressed Byte Stream

There are two types of byte sequences in the stream. The first is a standard
UTF-8 codepoint sequence - a leading byte followed by 0 to 3 continuation bytes.
The second is a sized pointer sequence (or alternatively, a length-distance pair),
made of 2 or 3 consecutive bytes, referencing the length and distance to a
previous sequence in the stream.

The 5 least significant bits of the lead byte of a sized pointer sequence contain
the length of the sequence, which can have a value between 4 and 31. The 3
most significant bits for the lead byte are either 110 for a 2 byte pointer or 111
for a 3 byte pointer. This was intentionally chosen to be similar to the standard
UTF-8 lead byte identifier bits*. The decoder will differentiate between a
codepoint and a sized pointer sequence by the second byte’s top bit - which is
always 1 in a codepoint sequence but 0 in a sized pointer sequence.

The second and optionally third bytes of a pointer sequence represent the
distance to the start of the pointed sequence. If the distance is smaller than 128,
a single byte is used containing the literal 7 bit value. Otherwise two bytes are
used and encoded as a big endian 15bit integer.

* The reason has to do with being easily able to detect invalid or truncated streams, and issues with
decompression of incomplete parts.



The following table demonstrates the unambiguity of the two encoding patterns

(lI"

(where “1” bits represent length and “d” bits represent distance) :

Sized pointer sequence UTF-8 Codepoint sequence
1 byte n/a OXXXXXXX
2 bytes 11011111 eddddddd 110XXXXX 1OXXXXXX
3 bytes 11111111 eddddddd dddddddd 1110XxXXX 1OXXXXXX 1OXXXXXX
4 bytes n/a 11110XXX 1OXXXXXX LOXXXXXX LOXXXXXX

The Compression Process (reference implementation)

Note: this describes the exact algorithm used by the reference implementation. In terms of
decompressor compatibility, there’s no actual necessity that every implementation follows it, but
having uniform results from other implementations would greatly simplify testing and overall quality
assurance.

During compression every consecutive 4 byte input sequence is hashed
(including overlapping sequences). The hash function used is a Rabin-Karp
polynomial hash with a prime constant of 199 (b6*19923 + b1*19972 + b2*199~1
+ b3*19970). A rolling hash implementation may be used, though in pratice it has proven to be

slower than the simpler recalculation of the hash.

The hash is then looked up in a hash table (having a capacity of exactly 65537
buckets, with a hash index of (hash mod 65537)) to find a match to previous
occurrences of the 4 byte sequence it represents. If the bucket representing the
hash of the sequence is empty, no match has been found: the literal byte is sent
to the output and read position is incremented to the next byte. Otherwise a
match may have been found: all sequences (within the 32k window) referenced
in the bucket are then tested. For every possible match tested, all bytes
(including additional bytes beyond the first 4) are linearly compared up to the
longest match possible (or the maximum allowed - 31).



Note: the bucket may contain references to non-matching sequences - that may happen
because of hash collisions. This is not a problem as they will not pass the linear comparison.

The longest match found* in the bucket is the one eventually used. A
length-distance pair is then encoded to a sized pointer sequence of 2 or 3 bytes
(described above) and sent to the output. Read position is then incremented to
the next byte(s), sequences within the matched sequence are hashed and added
to the hash table, but not matched to previous ones. Matching resumes at the
first byte following the matched range.

A reference to the current sequence is then added to the bucket. Every bucket in
the hash table may contain up to 64 elements. When filled up to its maximum
capacity, the oldest 32 elements are discarded.

* Since distances smaller than 128 are encoded to 2 bytes and larger by 3, the compressor optimizes
for the highest length/byte count ratio. It will reject matches of distance >=128 that are not more than
1.5x longer than a previous match of distance <128. This may also slightly improve compression speed.

The Decompression Process

Decompression is very simple. The compressed stream is iterated one byte at a
time. If the current byte’s top bits are 111 or 110 and the following one has 0 as
top bit, the current byte and the one(s) following, are interpreted and decoded
as a sized pointer sequence (described above). Otherwise, the raw input byte
value is sent to the output. Decoding a sized pointer is as simple as finding its
start position (= current read position - distance) and copying the pointed bytes
to the output, numbered by length.

Note: when decompressing an arbitrary, partial block from the input stream, special care is
needed to always output valid UTF8 strings. If any of the last 1-3 output bytes are part of a
truncated codepoint or pointer sequence, they are saved and only decoded with the next block.



Efficiency and Performance

The Javascript implementation, benchmarked on a single core of an Intel
Pentium G3320 (a low end desktop) on a modern browser, for 1MB files, has a
typical compression speed of 3-14MB/s. Decompression speed ranges between
20-80MB/s. The C++ implementation is typically around 30-40MB/s for
compression and 300-500MB/s for decompression. These figures may further
improve with subsequent optimizations of the code.

Compression ratio is usually lower than Izma and [z-string on relatively long
inputs (longer than 32kb) and similar or better on shorter ones. On very long (or
some pathologically repetitive) inputs, it may be substantially lower, mainly
because of the 32kb window and 31 byte sequence limits.

Compression memory requirement is about <input size> * 2 plus a hash table
memory size bounded by an approximate worst case of 65537 * 64 * 4
(<BucketCount> * <MaxBucketCapcity> * <SequencelocatorByteSize>) = ~16MB. The
theoretical upper bounding number of different 4 byte permutations for a 32kb
window is 4 * 32kb = 128kb (actual number is smaller because of overlap), which
is about twice the hash table bucket count, yielding a worst case load factor of
about 2 (assuming a uniform hash distribution), which is acceptable. A
large/smaller maximum bucket capacity may be used, increasing/decreasing
compression ratio slightly (and decreasing/increasing compression speed
respectively), though experimentally it hasn’t proven to be significant enough,
given the small window size.



Some example comparison results in various browsers:

(times are in milliseconds, note this includes binary to string conversion time, which may be a significant fraction of

the decompression time)

English Bible Excerpt (978453 bytes)

Program Compressed | Comp. Decomp. Comp. Decomp. Comp. Decomp.
Name size (FF 32) (FF 32) (Ch 37) (Ch 37) (IE11) (IE11)
Lzma 244983 2604 307 2825 615 3527 1396
Lz-string | 327206 577 77 455 64 976 71
Lz-utf8 367359 109 17 103 17 257 50
Hindi Bible Excerpt (999716 bytes)
Program Compressed | Comp. Decomp. Comp. Decomp. Comp. Decomp.
Name size (FF 31) (FF 31) (Ch 37) (Ch 37) (IE11) (IE11)
Lzma 140104 3738 228 3230 552 3826 1190
lz-string | 157328 213 37 309 45 300 34
Lz-utf8 226721 95 16 90 15 280 40
Japanese Alice in Wonderland (246025 bytes
Program Compressed | Comp. Decomp. Comp. Decomp. Comp. Decomp.
Name size (FF 31) (FF 31) (Ch 37) (ch 37) (IE11) (IE11)
Lzma 59711 1405 80 1084 141 1088 272
Lz-string | 59472 58 14 113 11 63 13
Lz-utf8 86302 59 4 52 3 98 8
JQueryUL.js (451466 bytes)
Program Compressed | Comp. Decomp. Comp. Decomp. Comp. Decomp.
Name size (FF 31) (FF 31) (Ch 37) (ch 37) (IE11) (IE11)
Lzma 95942 4198 129 1284 262 1518 585
lz-string | 154464 212 36 214 19 334 36
Lz-utf8 137170 74 8 62 8 110 24




Copyright © 2014-2015, Rotem Dan <rotemdan@gmail.com>. Available under the MIT license.



